This site is no longer being updated and is maintained for archive purposes only

The actual information could be found at



Ivanov Sergei O.





Research Interests

Publications and preprints




Research Interests 

Homological algebra, algebraic topology


Publications and preprints 


11. S. O. Ivanov, R. Mikhailov, J. Wu, Homotopy theory and generalized dimension subgroups, Journal of Algebra, Volume 484, (2017), Pages 224-246, link

10. S. O. Ivanov, R. Mikhailov, On a problem of Bousfield for metabelian groups, Advances in Mathematics, Volume 290, 26 February 2016, Pages 552-589, link

9. A. Ivanov, S. O. Ivanov, Y. Volkov, Guodong Zhou, BV structure on Hochschild cohomology of the group ring of quaternion group of order eight in characteristic two, Journal of Algebra, Volume 435, 1 August 2015, Pages 174-203, link

8. S. O. Ivanov, R. Mikhailov, A higher limit approach to homology theories, Journal of Pure and Applied Algebra, 219, pp. 1915–1939 (2015), link

7. S. O. Ivanov, Y. V. Volkov, Stable Calabi–Yau dimension of self-injective algebras of finite type, Journal of algebra 413 (2014), 72–99, link

6. S. O. Ivanov, The stable Calabi-Yau dimension of the preprojective algebra of type Ln, St. Petersburg Math. J. 24 (2013), 475-484, link

5. S. O. Ivanov, Self-Injective algebras of stable Calabi-Yau dimension three, Journal of Mathematical Sciences 2013, link

4. S. O. Ivanov, Nakayama functors and EilenbergWatts theorems, Journal of Mathematical Sciences 2012, link

3. Yu. V. Volkov, A. I. Generalov, S. O. Ivanov, On the construction of bimodule resolutions with the help of the Happel lemma, Journal of Mathematical Sciences 2010, link

2. A. I. Generalov, S. O. Ivanov, Bimodule resolution of a group algebra, Journal of Mathematical Sciences 2009, link

1. A. I. Generalov, A. A. Ivanov, S. O. Ivanov, Hochschild cohomology of algebras of quaternion type. II. The family Q(2B)1 in characteristic 2. Journal of Mathematical Sciences, Volume 151, Issue 3 , pp 2961-3009 (2008), link



3. Higher limits. fr-codes

2. Group theory and homotopy groups of spheres. Wu’s formula

1. HR-localization and HR-length of a group



14th Line 29B, Vasilyevsky Island, St.Petersburg 199178, RUSSIA

Tel.: (+7-812) 363-68-71